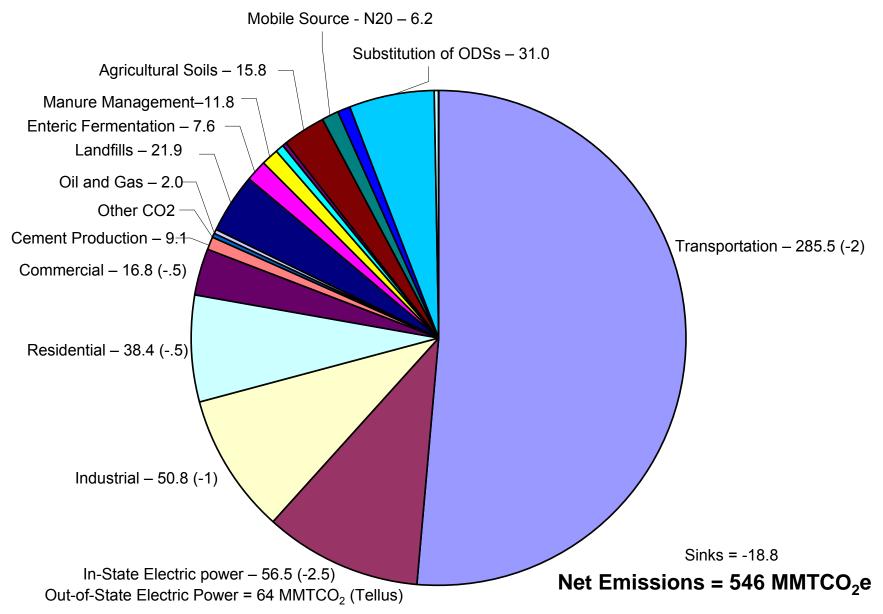


Policy Options for Reducing CO₂ Emissions from CA Cement

Ned Helme, President
David Wagger, Policy Analyst
Center for Clean Air Policy


California Energy Commission
Climate Change Advisory Committee
April 6, 2005

CA GHG Inventory – 1999 (Gross Emissions = $427.7 \text{ MMTCO}_2\text{e}$)

Out-of-State Electric Power = 54 MMTCO_2 (Tellus)

Est. CA GHG Projections – 2020 (Gross Emissions = 564 MMTCO₂e) Assumes 6.5 MMTCEs reduced from recent policies (shown in parentheses).

Note: In-state and out-of-state power emissions may be larger than shown due to demand changes.

Elements of CCAP's CA Cement Analysis

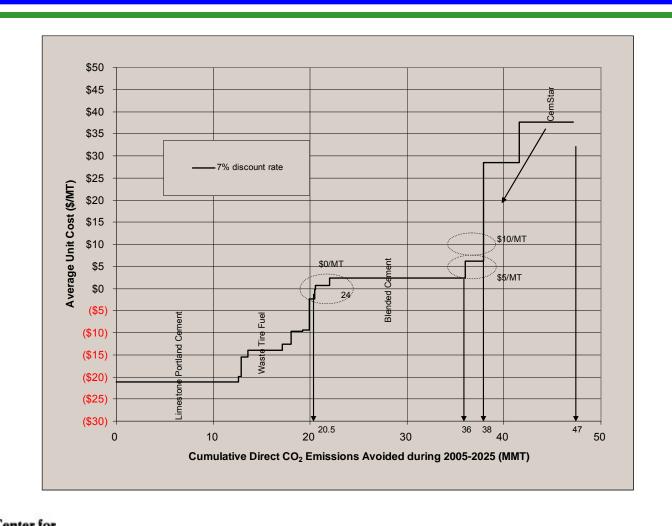
- 1. Future baselines of clinker and cement capacities and output
- 2. Future baselines of associated fuel and electricity consumption
- Future baselines for CO₂ emissions from fuel, electricity, and limestone consumption
- 4. Information on benefits, costs, and technical potentials of energy-efficiency (EE) and other measures to reduce energy consumption and CO₂ emissions from clinker and cement
- Potential cumulative reductions in energy consumption and CO₂ emissions from measure implementation and their cumulative net costs
- 6. Abatement-cost curves for cumulative direct CO₂ emissions
- 7. Projections of future annual direct CO₂ emissions under various amounts of measure implementation

Key Data Sources and Assumptions

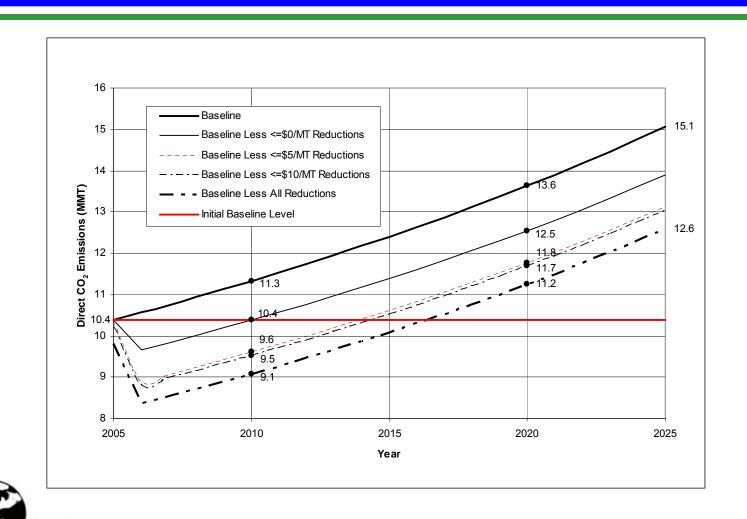
- Growth rate of 2% were used based on discussions with representatives from the cement industry and based on knowledge of national growth statistics.
- Future baselines for fuel and electricity consumption were based on a combination of national and California specific data, with assumptions on improvements in energy efficiency consistent with historical trends.
- CO₂ emission factors were taken from EPA documents, especially the Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2002.
- Indirect factor for electricity based on average grid electricity consumed in California, derived from projections in EIA's Annual Energy Outlook 2005.
- Information on the benefits, costs and technical potentials of various measures are from publicly available reports by the Lawrence Berkeley National Laboratory (LBNL) as well as from a more recent draft LBNL report for the California Energy Commission.
- For additional details, see memo dated March 30, 2005.

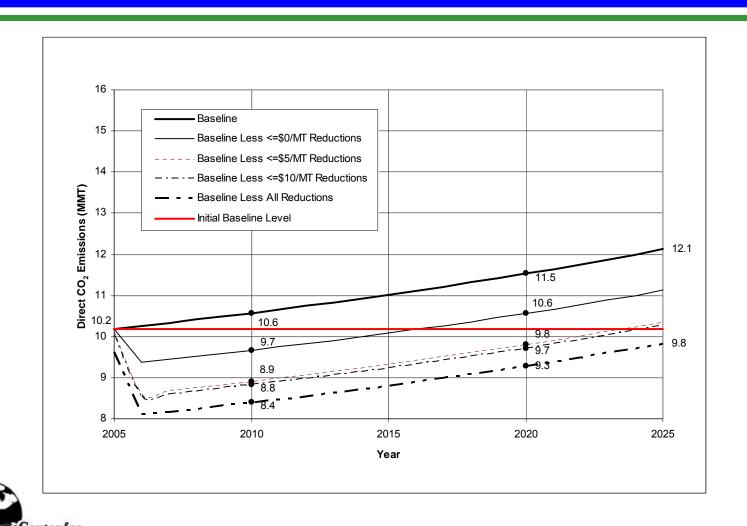
Result of Cement Analysis (1)

- Baseline annual <u>direct</u> CO₂ emissions to increase from 10.4 to 15.1 MMTCO₂ from 2005 to 2025 (2% annual sector growth)
 - > 11.3 (2010), 13.6 (2020), and 263 (2005–2025) MMTCO₂
 - ➤ 1% sector growth lowers baseline by ~12% relative to 2% growth.
- 47 MMTCO₂ in potential cumulative reductions from baseline
 - > 38 MMTCO₂ from measures costing ≤\$10/MT (7% discount)
 - > 36 MMTCO₂ from measures costing ≤\$5/MT (7% discount)
 - ≥ 20 MMTCO₂ from measures costing ≤\$0/MT (7% discount)
 - Little effect at ≤\$10/MT and ≤\$5/MT by 4% and 20% discount rates
 - ➤ 1% sector growth lowers reductions by 5–10% relative to 2% growth.
- At best, annual emissions to return to initial value by 2017 and exceed it by 2.2 MMTCO₂ in 2025, reaching 12.6 MMTCO₂



Result of Cement Analysis (2)


- 70% of cumulative emissions reductions from 2 measures
 - Limestone Portland Cement: 12.6 MMTCO₂ at (\$21)/MT (savings)
 - Blended Cement: 14.0 MMTCO₂ at \$2.40/MT
- Possible 3.6-MMTCO₂ reduction from Waste Tire Fuel at (\$14)/MT (savings), but dependent upon current waste-tire use
- All 3 measures have market barriers to implementation
 - Limestone Portland Cement: Market acceptance
 - Blended Cement: Cement standards
 - Waste Tire Fuel: Public resistance
- State policies need to address these market barriers to enable emissions reductions from CA cement sector


Abatement-Cost Curve for CA Cement Sector (2% Annual Sector Growth, 7% Discount Rate)

Projected Future Direct Emissions from CA Cement Sector (2% Annual Sector Growth)

Projected Future Direct Emissions from CA Cement Sector (1% Annual Sector Growth; 100% of Measure Benefits)

Policy Options for Reducing CO₂ Emissions from CA Cement Sector (1)

Form	Advantages	Disadvantages
Technology Mandates	Sector participation	Less flexibility; Less innovation; Potentially high compliance costs
Direct Cost-Sharing with Public Funds	Financial incentives; Voluntary participation	Public, other sector disapproval; Susceptible to budget process
Indirect Cost-Sharing via Tax Code		Public, other sector disapproval; Ineffective distribution of financial incentives
Negotiated Agreements	Flexibility	Potential for weak and/or uneven agreements across sector
Emissions-Intensity Benchmarking	Sector participation	Absolute emission increases possible
Cap-&-Trade System ¹	Sector participation (1,2); Emissions	Cap perceived as restriction on sector growth (1,2); Less flexibility, higher costs
Cap Only System ²	Target (1,2); Flexibility (1)	than Cap-&-Trade (2); Greater need to get cap level(s) right (2)

Policy Options for Reducing CO₂ Emissions from CA Cement Sector (2)

- Regardless of policy option selected, policies are needed to lower or remove barriers to using Limestone Portland Cement, Blended Cement, and Waste Tire Fuel.
 - Codify use of Limestone Portland Cement and Blended Cement in public-works projects and encourage their use in the private sector
 - Take more active role in explaining and demonstrating to the public the benefits from using Waste Tire Fuel instead of coal in cement kilns

Conclusions

- Various cost-effective options are available to the cement sector, including measures costing less than \$0, \$5 and \$10 per ton CO₂.
- With 2% per year growth rate assumption, it will be difficult to reduce the growth in emissions to 2000 levels by 2020.
 - » Results are sensitive to this assumption, which was taken from the industry's representation of national growth rates.
- Policies are needed to encourage use of limestone and blended cements, the two major reduction options identified. Financial incentives may play a smaller role for this sector.
- A variety of voluntary or mandatory policy approaches could be used to encourage CO₂ reductions from cement, depending on the group's later assessment of whether reductions from this sector are needed to meet a statewide reduction goal.

Questions for Discussion

- Assumptions about the growth rate are critical to setting a target for this sector. What additional work, if any, should be done to evaluate the expected growth rate for the cement industry in California?
- Which voluntary and mandatory implementation options should be examined in detail for further discussion?

